Wei-Qiang Zhang
- Name (Simplified Chinese):Wei-Qiang Zhang
- Name (English):Wei-Qiang Zhang
- E-Mail:
- School/Department:Department of Electronic Engineering
- Business Address:Room 5-111, Rohm Building
- Contact Information:+86-10-62781847
- Degree:Doctoral degree
- Alma Mater:Tsinghua University
- Teacher College:DZGCX
- Discipline:Signal and Information Processing
No content
- Selected Journal Publications
H. Wang and W.-Q. Zhang, “Unstructured pruning and low rank factorisation of self-supervised pre-trained speech models,” IEEE Journal of Selected Topics in Signal Processing, 2024. doi: 10.1109/JSTSP.2024.3433616.
Y.-F. Shao, P. Jiang, Y. Dong, W. Li, and W.-Q. Zhang, “AE-IRMamba: Low complexity inverted residual Mamba for identification of piezoelectric ceramic and optical fiber acoustic emission sensors signals,” IEEE Sensors Journal, 2024. doi: 10.1109/JSEN.2024.3457913.
H. Zhang, N. Si, Y. Chen, X. Yang, D. Qu, and W.-Q. Zhang, “Improving speech translation by cross-modal multi-grained contrastive learning,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 31, pp. 1075–1086, 2023. doi: 10.1109/TASLP.2023.3244521.
J. Yao, X. Chen, X.-L. Zhang, W.-Q. Zhang, and K. Yang, “Symmetric saliency-based adversarial attack to speaker identification,” IEEE Signal Processing Letters, vol. 30, 2023. doi: 10.1109/LSP.2023.3236509.
Y. Qin, L. Sun, H. Chen, W. Yang, W.-Q. Zhang, J. Fei, and G. Wang, “MVKT-ECG: Efficient single-lead ECG classification for multi-label arrhythmia by multi-view knowledge transferring,” Computers in Biology and Medicine, vol. 166, Art. no. 107503, Sept. 2023. doi: 10.1016/j.compbiomed.2023.107503.
C. Wu, F. Wu, T. Qi, W.-Q. Zhang, X. Xie, and Y. Huang, “Removing AI’s sentiment manipulation of personalized news delivery,” Humanities & Social Sciences Communications, vol. 9, no. 459, 2022. doi: 10.1057/s41599-022-01473-1.
J. Zhao and W.-Q. Zhang, “Improving automatic speech recognition performance for low-resource languages with self-supervised models,” IEEE Journal of Selected Topics in Signal Processing, vol. 16, no. 6, pp. 1227–1241, Oct. 2022. doi: 10.1109/JSTSP.2022.3184480.
Z. Zhao and W.-Q. Zhang, “End-to-end keyword search system based on attention mechanism and energy scorer for low resource languages,” Neural Networks, vol. 139, pp. 326-334, Jul. 2021. doi: 10.1016/j.neunet.2021.04.002.
C. Lu, Y. Liu, W.-Q. Zhang and S. Zhang, “Tightness of a new and enhanced semidefinite relaxation for MIMO detection,” SIAM Journal on Optimization, vol. 29, no. 1, pp. 719-742, Jan. 2019. doi: 10.1137/17M115075X.
J. Kang, W.-Q. Zhang, W.-W. Liu, J. Liu, and M. T. Johnson, “Lattice based transcription loss for end-to-end speech recognition,” Journal of Signal Processing Systems, vol. 90, no. 7, pp. 1013-1023, Sept. 2018. doi: 10.1007/s11265-017-1292-0.
C. Lu, Z. Deng, W.-Q. Zhang, and S.-C. Fang, “Argument division based branch-and-bound algorithm for unit-modulus constrained complex quadratic programming,” Journal of Global Optimization, vol. 70, no. 1, pp. 171-187, Jan. 2018. doi: 10.1007/s10898-017-0551-8.
X.-K. Yang, L. He, D. Qu, and W.-Q. Zhang, “Semi-supervised minimum redundancy maximum relevance feature selection for audio classification,” Multimedia Tools and Applications, vol. 77, no. 1, pp. 713-739, Jan. 2018. doi: 10.1007/s11042-016-4287-0.
X. Yang, D. Qu, W.-L. Zhang, and W.-Q. Zhang, “An adapted data selection for deep learning-based audio segmentation in multi-genre broadcast channel,” Digital Signal Processing, vol. 81, pp. 8-15, Oct. 2018. doi: 10.1016/j.dsp.2018.03.004.
W.-W. Liu, M. Cai, W.-Q. Zhang, J. Liu, and M. T. Johnson, “Discriminative boosting algorithm for diversified front-end phonotactic language recognition,” Journal of Signal Processing Systems, vol. 82, no. 2, pp. 229-239, Feb. 2016. doi: 10.1007/s11265-015-1017-1.
W.-Q. Zhang, “Fast Doppler rate estimation based on fourth-order moment spectrum,” Electronics Letters, vol. 51, no. 23, pp. 1926–1928, Nov. 2015. doi: 10.1049/el.2015.2182.
Z.-Y. Li, W.-Q. Zhang, and J. Liu, “Multi-resolution time frequency feature and complementary combination for short utterance speaker recognition,” Multimedia Tools and Applications, vol. 74, no. 74, pp. 937-953, Feb. 2015. doi: 10.1007/s11042-013-1705-4.
W.-Q. Zhang, W.-W. Liu, Z.-Y. Li, Y.-Z. Shi, and J. Liu, “Spoken language recognition based on gap-weighted subsequence kernels,” Speech Communication, vol. 60, pp. 1-12, May 2014. doi: 10.1016/j.specom.2014.01.005.
Y.-Z. Shi, W.-Q. Zhang, J. Liu, and M. Johnson, “Efficient one-pass decoding with NNLM for speech recognition,” IEEE Signal Processing Letters, vol. 21, no. 4, pp. 377-381, Apr. 2014. doi: 10.1109/LSP.2014.2303136.
W.-L. Zhang, D. Qu, W.-Q. Zhang, and B.-C. Li. “Rapid speaker adaptation using compressive sensing,” Speech Communication, vol. 55, no. 10, pp. 950-963, Nov.-Dec. 2013. doi: 10.1016/j.specom.2013.06.012.
W.-L. Zhang, W.-Q. Zhang, B.-C. Li, D. Qu, and M. T. Johnson, “Bayesian speaker adaptation based on a new hierarchical probabilistic model,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 7, pp. 2002-2015, Sept. 2012. doi: 10.1109/TASL.2012.2193390.
W.-Q. Zhang, L. He, Y. Deng, J. Liu, and M. Johnson, “Time-frequency cepstral feature and constrained heteroscedastic linear discriminant analysis for language recognition,” IEEE Transactions on Audio, Speech and Language Processing, vol. 19, no. 2, pp. 266-272, Feb. 2011. doi: 10.1109/TASL.2010.2047680.
W.-Q. Zhang, T. Hou, and J. Liu, “Discriminative score fusion for language identification,” Chinese Journal of Electronics, vol. 19, no. 1, pp. 124–128, Jan. 2010. doi: 10.23919/CJE.2010.10159256.
W.-Q. Zhang and J. Liu, “An equalized heteroscedastic linear discriminant analysis algorithm,” IEEE Signal Processing Letters, vol. 15, pp. 585-588, 2008. doi: 10.1109/LSP.2008.2001561.
R. Tao, W.-Q. Zhang, and E.-Q. Chen, “Two-stage method for joint time delay and Doppler shift estimation,” IET Radar, Sonar & Navigation, vol. 2, no. 1, pp. 71-77, Feb. 2008. doi: 10.1049/iet-rsn:20060014.
R. Tao, B. Deng, W.-Q. Zhang, and Y. Wang, “Sampling and sampling rate conversion of band limited signals in the fractional Fourier transform domain,” IEEE Transactions on Signal Processing, vol. 56, no. 1, pp. 158-171, Jan. 2008. doi: 10.1109/TSP.2007.901666.