zhangweiqiang
![]() |
- Associate researcher
- Name (English):Wei-Qiang ZHANG
- Name (Pinyin):zhangweiqiang
- E-Mail:
- School/Department:Department of Electronic Engineering
- Business Address:Rohm 5-111
- Contact Information:+86-10-62781847
- Degree:Doctoral degree
- Professional Title:Associate researcher
- Alma Mater:Tsinghua University
- Teacher College:DZGCX
- Discipline:Signal and Information Processing

No content
- Selected Conference Publications
Ø L. Xue, K. Song, D. Wu, X. Tan, N. L. Zhang, T. Qin, W.-Q. Zhang, and T.-Y. Liu, “DeepRapper: Neural rap generation with rhyme and rhythm modeling,” in Proc. ACL-IJCNLP, Bangkok, Thailand, 2021, pp. 69-81.
Ø G. Chen, S. Chai, G. Wang, J. Du, W.-Q. Zhang, C. Weng, D. Su, D. Povey, J. Trmal, J. Zhang, M. Jin, S. Khudanpur, S. Watanabe, S. Zhao, W. Zou, X. Li, X. Yao, Y. Wang, Y. Wang, Z. You, and Z. Yan, “GigaSpeech: An evolving, multi-domain ASR corpus with 10,000 hours of transcribed audio,” in Proc. Interspeech, Brno, Czechia, 2021.
Ø J. Zhao, Z. Lv, A. Han, G. Wang, G. Shi, J. Kang, J. Yan, P. Hu, S. Huang, and W.-Q. Zhang, “The TNT team system descriptions of Cantonese and Mongolian for IARPA OpenASR20,” in Proc. Interspeech, Brno, Czechia, 2021.
Ø H. Yu, J. Zhao, S. Yang, Z. Wu, Y. Nie, and W.-Q. Zhang, “Language recognition based on unsupervised pretrained models,” in Proc. Interspeech, Brno, Czechia, 2021.
Ø Y. Yan, X. Tan, B. Li, G. Zhang, T. Qin, S. Zhao, Y. Shen, W.-Q. Zhang, and T.-Y. Liu, “Adaptive text to speech for spontaneous style,” in Proc. Interspeech, Brno, Czechia, 2021.
Ø K. He, Y. Shen, W.-Q. Zhang, and J. Liu, “Staged training strategy and multi-activation for audio tagging with noisy and sparse multi-label data,” in Proc. ICASSP, Barcelona, Spain, May 4-8, 2020, pp. 631-635.
Ø J. Xie, R. Yan, S. Xiao, L. Peng, M. T. Johnson, and W.-Q. Zhang, “Dynamic temporal residual learning for speech recognition,” in Proc. ICASSP, Barcelona, Spain, May 4-8, 2020, pp. 7709-7713.
Ø Z. Zhao and W.-Q. Zhang, “End-to-end keyword search based on attention and energy scorer for low resource languages,” in Proc. Interspeech, Shanghai, China, Oct. 25-29, 2020, pp. 2587-2591.
Ø R. Li et al., “THUEE system for NIST SRE19 CTS challenge,” in Proc. Interspeech, Shanghai, China, Oct. 25-29, 2020, pp. 2232-2236.
Ø Z. Li, L. He, J. Li, L. Wang, and W.-Q. Zhang, “Towards discriminative representations and unbiased predictions: Class-specific angular softmax for speech emotion recognition,” in Proc. Interspeech, Graz, Austria, Sept. 15-19, 2019, pp. 1696-1700.
Ø K. He, Y. Shen, and W.-Q. Zhang, “Hierarchical pooling structure for weakly labeled sound event detection,” in Proc. Interspeech, Graz, Austria, Sept. 15-19, 2019, pp. 3624-3628.
Ø H. Yang and W.-Q. Zhang, “Music genre classification using duplicated convolutional layers in neural networks,” in Proc. Interspeech, Graz, Austria, Sept. 15-19, 2019, pp. 3382-3386.
Ø Y. Shen, K. He, and W.-Q. Zhang, “Learning how to listen: A temporal-frequential attention model for sound event detection,” in Proc. Interspeech, Graz, Austria, Sept. 15-19, 2019, pp. 2563-2567.
Ø J. Kang, W.-Q. Zhang, and J. Liu, “Gated convolutional networks based hybrid acoustic models for low resource speech recognition,” in Proc. ASRU, Okinawa, Japan, Dec. 16-20, 2017, pp. 157-164.
Ø Z.-Q. Lv, J. Kang, W.-Q. Zhang, and J. Liu, “An LSTM-CTC based verification system for proxy-word based OOV keyword search,” in Proc. ICASSP, New Orleans, USA, Mar. 5-9, 2017, pp. 5655-5659.
Ø Y. Tian, L. He, M. Cai, W.-Q. Zhang, and J. Liu, “Deep neural networks based speaker modeling at different levels of phonetic granularity,” in Proc. ICASSP, New Orleans, USA, Mar. 5-9, 2017, pp. 5440-5444.
Ø X.-K. Yang, D. Qu, W.-L. Zhang, and W.-Q. Zhang, “The NDSC transcription system for the 2016 multi-genre broadcast challenge,” in Proc. SLT, San Diego, USA, Dec. 13-16, 2016, pp. 273-278.
Ø Z.-Q. Lv, M. Cai, W.-Q. Zhang, and J. Liu, “A novel discriminative score calibration method for keyword search,” in Proc. Interspeech, San Francisco, USA, Sept. 8-12, 2016, pp. 745-749.
Ø Y. Tian, M. Cai, H. Liang, W.-Q. Zhang, and J. Liu, “Improving deep neural networks based speaker verification using unlabeled data,” in Proc. Interspeech, San Francisco, USA, Sept. 8-12, 2016, pp. 1863-1867.
Ø Z.-Q. Lv, M. Cai, C. Lu, J. Kang, L.-K. Hui, W.-Q. Zhang, and J. Liu, “Improved system fusion for keyword search,” in Proc. ASRU, Scottsdale, USA, Dec. 13-17, 2015, pp. 231-236.
Ø M. Cai, Z.-Q. Lv, B.-L. Song, Y.-Z. Shi, W.-L. Wu, C. Lu, W.-Q. Zhang, and J. Liu, “The THUEE system for the OpenKWS14 keyword search evaluation,” in Proc. ICASSP, Brisbane, Australia, Apr. 19-24, 2015, pp. 4734-4738.
Ø J. Kang, C. Lu, M. Cai, W.-Q. Zhang, and J. Liu, “Neuron sparseness versus connection sparseness in deep neural network for large vocabulary speech recognition,” in Proc. ICASSP, Brisbane, Australia, Apr. 19-24, 2015, pp. 4954-4958.
Ø Y.-Z. Shi, W.-Q. Zhang, M. Cai, and J. Liu, “Variance regularization of RNNLM for speech recognition,” in Proc. ICASSP, Florence, Italy, May 4-9, 2014, pp. 4931-4935.
Ø W.-W. Liu, W.-Q. Zhang, Y.-Z. Shi, A. Ji, J. Xu, and J. Liu, “Improved phonotactic language recognition based on RNN feature reconstruction,” in Proc. ICASSP, Florence, Italy, May 4-9, 2014, pp. 5359-5363.
Ø W.-W. Liu, W.-Q. Zhang, and J. Liu, “Phonotactic language identification based on time-gap-weighted lattice kernels,” in Proc. Interspeech, Singapore, Sept. 14-18, 2014, pp. 3022-3026.
Ø W.-L. Zhang, D. Qu, W.-Q. Zhang, and B.-C. Li, “Speaker adaptation based on sparse and low-rank eigenphone matrix estimation,” in Proc. Interspeech, Singapore, Sept. 14-18, 2014, pp. 2792-2796.
Ø Y.-Z. Shi, W.-Q. Zhang, M. Cai, and J. Liu, “Temporal kernel neural network language model,” in Proc. ICASSP, Vancouver, Canada, May 26-31, 2013, pp. 8247-8251.
Ø W.-Q. Zhang, Z.-Y. Li, W. Liu, and J. Liu, “THU-EE system fusion for the NIST 2012 speaker recognition evaluation,” in Proc. Interspeech Lyon, France, Aug. 25-29, 2013, pp. 2474-2478.
Ø W. Liu, W.-Q. Zhang, Zhang, Z.-Y. Li, and J. Liu. “Parallel absolute-relative feature based phonotactic language recognition,” in Proc. Interspeech, Lyon, France, Aug. 25-29, 2013, pp. 59-63.
Ø W.-L. Zhang, W.-Q. Zhang, and B.-C. Li, “Compact acoustic modeling based on acoustic manifold using a mixture of factor analyzers,” in ASRU, Olomouc, Czech Republic, Dec. 8-12, 2013, pp. 37-42.
Ø Z.-Y. Li, W.-Q. Zhang, L. He, and J. Liu, “Complementary combination in i-vector level for language recognition,” in Proc. Odyssey, Singapore, Jun. 25-28, 2012, pp. 334-337.
Ø Y.-Z. Shi, W.-Q. Zhang, and J. Liu, “Robust audio fingerprinting based on local spectral luminance maxima scheme,” in Proc. Interspeech, Florence, Italy, Aug. 27-31, 2011, pp. 2485-2488.
Ø W.-L. Zhang, W.-Q. Zhang, and B.-C. Li, “Speaker adaptation based on speaker-dependent eigenphone estimation,” in Proc. ASRU, Hawaii, USA, Dec. 11-15, 2011, pp. 48-52.
Ø W.-Q. Zhang, Y. Deng, L. He, and J. Liu, “Variant time-frequency cepstral features for speaker recognition,” in Proc. Interspeech, Makuhari, Japan, Sept. 26-30, 2010, pp. 2122-2125.
Ø S. Meng, W.-Q. Zhang, and J. Liu, “Combining Chinese spoken term detection systems via side-information conditioned linear logistic regression,” in Proc. Interspeech, Makuhari, Japan, Sept. 26-30, 2010, pp. 685-688.
Ø J. Yang, J. Liu, and W.-Q. Zhang, “A fast query by humming system based on notes,” in Proc. Interspeech, Makuhari, Japan, Sept. 26-30, 2010, pp. 2898-2901.
Ø W.-Q. Zhang, Y. Shan, and J. Liu, “Multiple background models for speaker verification,” in Proc. Odyssey, Brno, Czech Republic, Jun. 28-Jul. 1, 2010, pp. 47-51.
Ø W.-Q. Zhang and J. Liu, “Two-stage method for specific audio retrieval,” in Proc. ICASSP, Hawaii, USA, Apr. 15-20, 2007, pp. IV-85-88.