冯雪Xue Feng

副教授

副教授 博士生导师 硕士生导师

电子邮箱:

入职时间:2005-01-31

所在单位:清华大学电子工程系

学历:研究生(博士)毕业

办公地点:罗姆楼2-101B

在职信息:在职

科学研究

当前位置: 中文主页 >> 科学研究
学术成果

    研究内容

    - 高维通用光学线性变换及光计算应用

    - 集成光学轨道角动量器件

    - 新型光电集成器件和集成回路

    代表性成果

    高维通用光学线性变换及光计算应用

    (1)为了克服Reck结构中的级联结构,我们提出了物理可实现的有限维“准OAM态”和“准角态”概念 (Physical Review A 95, 033827 (2017) ,并进一步扩展,提出了更具普遍性的离散相干空间模式的概念,由此提出和实现了基于离散空间相干模式的光学线性变换新方案。在实验上实现了24维的任意矩阵变换,矩阵维度是此前记录的4倍,变换保真度达到95.1%~82.1%,相关工作已经发表在Journal of Optics 杂志和 Journal of Physics B 杂志的联合特刊“Twisted Waves and Fields”上(J. Opt. 21, 104003, (2019));

    (2)进一步,我们又开展了基于可预报单光子源的15维的量子傅里叶变换(QFT)和基于对称信息完全正定算符值度量值(SIC POVM)的量子态层析(QST)。实验结果中,QFT的矩阵保真度为85%,而SIC POVM的保真度和QST的保真度分别为~97%和高达85.3%;还进一步给出了将该方法与参量下转换光源相结合用于光量子计算的系统构架,可实现量子计算中的典型算法-Shor因式分解算法(Physical Review Applied, 14(2), 024027, (2020))。

     

    集成型光学轨道角动量器件

    (1)轨道角动量(OAM)动态编/解码器:利用硅基光学微环构成高速轨道角动量(OAM)动态编码器,并且给出了利用光学OAM在集成芯片上通过OAM编码实现高速无线光通信的解决方案。利用我们提出的结构,可以产生阶数为-3~4的OAM光束,我们使用0~3阶的光束编码和解码数据,数据密度增大了一倍(Optics Express, 20(24), pp. 26986-26995, (2012));

    (2)“蛛网”型(Cobweb)和“齿轮”型(cogwheel)轨道角动量光束动态发射器:分别实现了纯态轨道角动量模式在-4~4阶和叠加态轨道角动量-5~5阶的动态调控(Scientific Reports 6: 22512, (2016),Scientific Reports 5:10958, (2015)),均为已有报道中调节范围最宽的结果,比已有其它结果可调范围增加近一倍(-4~4 vs.-2~2);

    (3)集成型近场光学轨道角动量器件:作为光与物质的相互作用的一个基本工具,等离子体涡旋光(Plasmonic vortex)因其独特的近场特性而非常有吸引力。我们提出了一种利用Laguerre Gaussian(LG)模式在传播过程引入的射径向相位梯度,来调控等离子体涡旋光携带OAM阶数的新方法,不仅能够获得从整数阶的OAM,同时也可以连续地获得分数阶OAM (Scientific Reports 6: 36269, (2016));同时,我们还提出了利用金属表面的多边形结构来提出了产生多种图案的二维光学晶格的方法 (Optics Letters 41 (7), 1478-1481, (2016));在角动量接收器方面,提出并实现了一种带有相位调制的复合光学角动量分束器,可将入射光根据所携带自旋角动量耦合到器件两侧,消光比大于10;根据携带的轨道角动量耦合到不同的偏转角度,阶次间隔为2的OAM入射光耦合为局域余弦高斯高斯光束(LCGB)并传输30μm后的分束间隔大于1.1μm(ACS Photonics, 2020, 7(1): 212-220)。

     

    新型光电集成器件

    (1)全硅光子集成回路: 提出了基于利用金属-介质周期结构中表面等离子激元(SPP)的Purcell增强的硅光源和硅基狭缝波导,构成全硅光互连集成回路的新方案。其中,制备出发光波长与金波导匹配的富硅氮化硅材料(波长530nm),获得了最高为3倍的增强效应(入选2013年度“中国光学重要成果”,现更名为“中国光学十大进展”);低损耗狭缝波导的传输损耗仅为0.6~0.8dB/mm@1064nm,弯曲损耗为4.1~4.6dB/180o(IEEE Photonics Technology Letters 28(1): 19-22, (2016)),为新型全硅互连提供了新的解决方案;

    (2)硅基高集成度、高性能的光互连功能器件:研制出硅基集成型光分插复用器、波分复用器和调制器等多种新型器件,其中通过微环阵列辅助的马赫-曾德尔干涉仪(MZI)型调制器表征调制效率的参数Vπ×L比已有报道MZI型硅基电光调制器提高2~3个数量级,比慢光增强型的MZI调制器提高约1个数量级 (Optics Express, 22 (9):10550-10558,(2014))。

    (3)利用硅基光子集成回路处理微波信号: 提出了利用纳米结构光学微腔实现可集成微波光子滤波器的新思路,实现了工作频率可达40 GHz的可调谐、可重构的带通和带阻型集成微波光子滤波器。其中关于带通滤波器的工作(IEEE Photonics Technology Letters, 24(17): 1502, (2012))是国际上第一个基于硅基芯片(SOI)的集成型可调谐、可重构微波光子滤波器的实验报道;

    (4)分层时分复用的集成光“水库”计算:利用硅基微环谐振腔的延时和滤波特性,构成了分层时分复用结构的光“水库”计算,通过模拟计算结果表明,相比之前的延时反馈型光“水库”计算系统在错误率可比拟的情况下(信号分类错误率0.5%,混沌序列预测错误率2.7%),处理速度可以达到1.3Gbps(Optics Express 22(25): 31356-31370, (2014));


    精选杂志文章:

    [1]    Shan Zhang, Shikang Li, Xue Feng*, Kaiyu Cui, Fang Liu, Wei Zhang, and Yidong Huang, “Generating heralded single photons with a switchable orbital angular momentum mode”, Photonics Research, 9 (9): 1865-1870 (2021).

    [2]    Shikang Li, Baohua Ni, Xue Feng*, Kaiyu Cui, Fang Liu, Wei Zhang, and Yidong Huang, “All-optical Image Identification with Programmable Matrix Transformation”, Optics Express, 29 (17): 26474-26485 (2021).

    [3]    Shikang Li, Shan Zhang, Xue Feng*, Stephen M. Barnett, Wei Zhang, Kaiyu Cui, Fang Liu, and Yidong Huang, “Programmable coherent linear quantum operations with high-dimensional optical spatial modes”, Physical Review Applied, 14(2), 024027, (2020).

    [4]    Xuesi Zhao, Xue Feng*, Fang Liu, Kaiyu Cui, Wei Zhang, and Yidong Huang, “A Compound Phase-Modulated Beam Splitter to Distinguish Both Spin and Orbital Angular Momentum”, ACS Photonics, 7(1): 212-220, (2020).

    [5]    Peng Zhao, Shikang Li, Xue Feng*, Stephen M. Barnett, Wei Zhang, Kaiyu Cui, Fang Liu, Yidong Huang, “Universal linear optical operations on discrete phase-coherent spatial modes with a fixed and non-cascaded setup”, Joint special issue on Twisted Waves and Fields,Journal of Optics and Journal of Physics B, J. Opt. 21: 104003, (2019).

    [6]    Xuesi Zhao, Xue Feng*, Peng Zhao, Fang Liu, Kaiyu Cui, Wei Zhang, and Yidong Huang, “Polarization-controllably launching localized cosine-Gauss beam with spatially varied metallic nano-apertures”, Optics Express, 27 (16): 22053-22073, (2019).

    [7]    Shikang Li, Peng Zhao, Xue Feng*, Kaiyu Cui, Fang Liu, Wei Zhang, and Yidong Huang, “Measuring the orbital angular momentum spectrum with a single point detector”, Optics Letters, 43(19): 4607-4610 (2018). 

    [8]    Dengke Zhang, Xue Feng, and Yidong Huang , “Orbital angular momentum induced by nonabsorbing optical elements through space-variant polarization-state manipulations”, Phys. Rev. A 98 (4): 043845 (2018).

    [9]    Peng Zhao, Shikang Li, Yu Wang, Xue Feng*, Kaiyu Cui, Fang Liu, Wei Zhang, and Yidong Huang, “Identifying the tilt angle and correcting the orbital angular momentum spectrum dispersion of misaligned light beam”, Scientific Reports 7: 7873, (2017).

    [10] Yu Wang, Václav Potoček, Stephen M. Barnett, and Xue Feng*, “Programmable holographic technique for implementing unitary and nonunitary transformations”, Phys. Rev. A 95 (3): 33827, (2017). (also Highlighted as the Editor’s Suggestion)

    [11] Peng Zhao, Shikang Li, Xue Feng*, Kaiyu Cui, Fang Liu, Wei Zhang, and Yidong Huang, “Measuring the complex orbital angular momentum spectrum of light with a mode-matching method”, Optics Letters, 42(6): 1080-1083, (2017).

    [12] Yu Wang, Peng Zhao, Xue Feng*, Yuntao Xu, Fang Liu, Kaiyu Cui, Wei Zhang, and Yidong Huang, “Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum”, Scientific Reports 6: 36269, (2016).

    [13] Yu Wang, Peng Zhao, Xue Feng*, Yuntao Xu, Kaiyu Cui, Fang Liu, Wei Zhang, and Yidong Huang, “Integrated photonic emitter with a wide switching range of orbital angular momentum modes”, Scientific Reports 6: 22512, (2016).

    [14] Yu Wang, Yuntao Xu, Xue Feng*, Peng Zhao, Fang Liu, Kaiyu Cui, Wei Zhang, and Yidong Huang, “Optical lattice induced by angular momentum and polygonal plasmonic mode”, Optics Letters 41 (7), 1478-1481, (2016).

    [15] Xiangdong Li, Xue Feng*, Xian Xiao, Yihang Li, Kaiyu Cui, Fang Liu, and Yidong Huang, “Silicon Slot Waveguide with Low Transmission and Bending Loss at 1064 nm”,  IEEE Photonics Technology Letters 28(1): 19-22, (2016).

    [16] Yu Wang, Xue Feng*, Dengke Zhang, Peng Zhao, Xiangdong Li, Kaiyu Cui, Fang Liu, and Yidong Huang, “Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices”, Scientific Reports 5: 10958, (2015).

    [17] Dengke Zhang, Xue Feng*, Kaiyu Cui, Fang Liu, and Yidong Huang, “Identifying Orbital Angular Momentum of Vectorial Vortices with Pancharatnam Phase and Stokes Parameters”, Scientific Reports 5:11982, (2015).

    [18] Xian Xiao, Xiangdong Li, Xue Feng*, Kaiyu Cui, Fang Liu, and Yidong Huang, “Eight-channel optical add-drop multiplexer with cascaded parent-sub microring resonators”, IEEE Photonics Journal,7(4):7801307,(2015).

    [19] Xian Xiao, Xiangdong Li, Xue Feng*, Kaiyu Cui, Fang Liu,and Yidong Huang, “Designing gallium nitride slot waveguide operating within visible band”, Optical and Quantum Electronics, 47 (12): 3705-3713, (2015).

    [20] Hong Zhang, Xue Feng*, Boxun Li, Yu Wang, Kaiyu Cui, Fang Liu, Weibei Dou, and Yidong Huang, “Integrated photonic reservoir computing based on hierarchical time-multiplexing structure”, Optics Express, 22(25): 31356–31370 (2014).

    [21] Xiangdong Li, Xue Feng*, Kaiyu Cui, Fang Liu, and Yidong Huang, “Integrated silicon modulator based on microring array assisted MZI”, Optics Express, 22 (9):10550-10558,(2014).

    [22] Rui Li, Xue Feng, Dengke Zhang, Kaiyu Cui, Fang Liu, Yidong Huang, “Radially Polarized Orbital Angular Momentum Beam Emitter Based on Shallow-Ridge Silicon Microring Cavity”, IEEE Photonics Journal, 6 (3): 2200710, (2014).

    [23] Dengke Zhang, Xue Feng, Xiangdong Li, Kaiyu Cui, Fang Liu, and Yidong Huang, “Tunable and Reconfigur- able Bandstop Microwave Photonic Filter Based on Integrated Microrings and Mach-Zehnder Interferometer”, IEEE Journal of Lightwave Technology 31(23):3668-3675, (2013).

    [24] Dengke Zhang, Xue Feng, Kaiyu Cui, Fang Liu, and Yidong Huang. “Generating in-plane optical orbital angular momentum beams with silicon waveguides”, IEEE Photonics Journal, 5(2): 2201206, (2013).

    [25] Chao Zhang, Xue Feng, Kaiyu Cui, and Yidong Huang, “Plasmonic enhancement of spontaneous emission from wide-linewidth emitters with nanostrip metallic waveguide”, Journal of Applied Physics, 114(5): 053105 (2013).

    [26] Keyong Chen, Xue Feng, Chao Zhang, Kaiyu Cui, and Yidong Huang, “Spectral broadening effects of spontaneous emission and density of state on plasmonic enhancement in cermet waveguides”, Optics Express, 21(1): 431–442 (2013).

    [27] Hai Yan, Xue Feng, Dengke Zhang, Kaiyu Cui, Fang Liu, and Yidong Huang, “Compact Optical Add-Drop Multiplexers With Parent-Sub Ring Resonators on SOI Substrates”, IEEE Photonics Technology Letters, 25(15):1462-1465, (2013)

    [28] Dengke Zhang, Xue Feng, and Yidong Huang, “Encoding and decoding of orbital angular momentum for wireless optical interconnects on chip”, Optics Express, 20(24): 26986-26995 (2012). (As Newsbreaks in Laser Focus World, 48 (12) 12/01/2012 )

    [29] Dengke Zhang, Xue Feng, and Yidong Huang, “Tunable and Reconfigurable Bandpass Microwave Photonic Filters Utilizing Integrated Optical Processor on Silicon-On-Insulator Substrate”, IEEE Photonics Technology Letters, 24(17):1502-1505, (2012).

    [30] Weiwei Ke, Xue Feng*, and Yidong Huang, “The effect of Si-nanocrystal size distribution on Raman spectrum”, Journal of Applied Physics, 109: 083526, (2011).


研究概况

    冯雪博士长期从事光电子器件方面的研究工作,已经发表学术期刊和会议论文超过150篇。本研究组立足于微纳结构光电子器件,针对光电集成芯片中所需的光源、传输、调控等功能器件以及集成方式开展研究工作,以期利用新材料、新结构、新工艺、新机理方面的突破,实现高集成度、低功耗和新功能的光电集成芯片,并探索其在光互连、光信号处理和新型光计算等领域的应用。

学术论文

    暂无内容

专利

    暂无内容

出版著作

    暂无内容

科研项目

    暂无内容