![]() |
个人信息Personal Information
助理教授
博士生导师
硕士生导师
教师英文名称:Quanming YAO
教师拼音名称:Yao Quanming
电子邮箱:
入职时间:2021-06-01
所在单位:电子与信息工程系
学历:博士研究生毕业
办公地点:罗姆楼11-305房间
性别:男
联系方式:qyaoaa [AT] tsinghua.edu.cn
学位:工学博士学位
在职信息:在职
毕业院校:香港科技大学
个人主页:https://lars-group.github.io/
其他联系方式Other Contact Information
邮编 :
通讯/办公地址 :
邮箱 :
个人简介Personal Profile
姚权铭博士是清华大学电子工程系助理教授,博士生导师,国家高层次青年人才计划入选者。于香港科技大学计算机系取得博士学位,后于第四范式担任首席研究员,创建和领导机器学习研究团队。主要研究方向为机器学习方法与原理,特别是在科学智能中的应用与大模型的理论基础。
发表顶级论文100余篇,包括Nature Computational Science / Nature Communication / JMLR / IEEE TPAMI / ICML / NeurIPS / ICLR等,总被引12000余次。其中抗噪标签算法“Co-teaching”是鲁棒学习领域的里程碑;小样本学习综述是ACM Computing Surveys近五年来最高被引论文;自动化图学习系列方法(TPAMI 2023等)蝉联Open Graph Benchmark榜单第一名;基于医药网络解决新药物互反应的工作刊载于Nature子刊。
担任国际机器学习会议ICML、NeurIPS和ICLR领域主席,旗舰期刊Neural Network资深编委、Machine Learning和Transaction on Machine Learning Research编委。荣获国内外诸多知名奖项,入围MIT Technical Review 35Under35(AI方向全球榜),首届蚂蚁Intech技术奖、国际神经网络学会(INNS)早期成就奖、香港科学会优秀青年科学家、吴文俊人工智能学会优秀青年奖、Google全球博士奖等,同时入选全球华人AI青年学者榜(机器学习方向25人)、福布斯30Under30精英榜与全球Top 2%科学家。最后,受邀在国际人工智能大会(AAAI)2024大会上做早期成就报告。
承担“数据与算法”核心课程,参与“高等机器学习”、“高科技人才的企业发展”研究生课程的授课工作;担任电子系“AI+系统”因材施教方向班主任。自入职以来连续三年指导学生毕业设计获评清华大学优秀毕业论文;指导本科生研究计划(SRT)获得特等奖(全校五位)、挑战杯特等奖(信息赛道唯一)。
代表性论文(星号 * 表示通讯作者,下划线表示共同一作)
[1]. Quanming Yao, Zhenqian Shen, Yaqing Wang*, Dejing Dou. Property-Aware Relation Networks for Few-Shot Molecular Property Prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). 2024
[2]. Yongqi Zhang, Quanming Yao*, Ling Yue, Xian Wu, Ziheng Zhang, Zhenxi Lin, Yefeng Zheng. Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural Network with Biomedical Network. Nature Computational Science. 2023.
[3]. Yongqi Zhang, Quanming Yao*, James T. Kwok. Bilinear Scoring Function Search for Knowledge Graph Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). 2023.
[4]. Quanming Yao, Yaqing Wang, Bo Han, James T. Kwok. Efficient Low-rank Tensor Learning with Nonconvex Regularization. Journal of Machine Learning Research (JMLR). 2022.
[5]. Yaqing Wang, Quanming Yao*, James T. Kwok, Lionel Ni. Generalizing from a Few Examples: A Survey on Few-Shot Learning. ACM computing surveys (CSUR). 2020.
[6]. Quanming Yao*, James T. Kwok, Taifeng Wang, and Tie-Yan Liu. Large-scale low-rank matrix learning with nonconvex regularizers. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). 2019
[7]. Quanming Yao* and James T. Kwok. Efficient learning with nonconvex regularizers by nonconvexity redistribution. Journal of Machine Learning Research (JMLR). 2018.
[8]. Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, Masashi Sugiyama. Co-teaching: Robust training deep neural networks with extremely noisy labels. Advances in Neural Information Processing Systems (NeurIPS). 2018.